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Addition formulas and the Rayleigh identity for arrays of elliptical cylinders
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We apply the Rayleigh method to solve the problem where a uniform electrostatic field is imposed upon a
rectangular array of elliptical cylinders embedded in a matrix of unit dielectric constant. This new formulation
overcomes geometric restrictions inherent in previous methods and is shown in principle and in various
examples to converge for all possible geometries of the array and inclusion. Also presented are forms of both
the interior and exterior addition formulas for harmonic functions in elliptical coordinates that possess optimal
regions of convergencgS1063-651X99)03609-(

PACS numbe(s): 03.50.De, 41.20.Cv, 78.20.Bh, 78.20.Ci

[. INTRODUCTION inclusion(say, that centered dBin Fig. 2) in terms of fields
associated with the central inclusiofThe term “addition
This paper forms part of a systematic investigation of thetheorem” is strictly intended to describe an algebraic equa-
generalization of a method due to Lord Raylejdhfor solv-  tion which relates the values of a single function evaluated at
ing transport problem$2] of inhomogeneous media. The the general argumentsv,u+v. The coefficients in this al-
aim of the generalization is to extend Rayleigh’s multipolegebraic equation must be independenupf. An “addition
technique to include geometries other than circles or sphereformula” is a (possibly transcendenjatéquation connecting
This generalization is not straightforward, as is shown by thehree (possibly distinck functions of the three arguments
fact that our first attemgi3] at it in the context of a rectan- u,v,u+v. See[4].] The addition formula was nonoptimal
gular array of elliptical inclusions encountered an unex-because it involved a mixture of polar and elliptical coordi-
pected problem of convergence, resulting in an undesirableates and so exhibited a region of convergence inappropriate
geometric restriction on the range of elliptical geometriesto a problem involving elliptical inclusions. Even when it is
that could be solved. It is the principal purpose of the presentlecided to use only harmonic functions of elliptical coordi-
work to show how the geometric restriction can be lifted, andnates in addition formulas, our work has revealed that a spe-
to demonstrate a generalization satisfactory in the sense oific procedure must be used to construct the addition for-
being capable of providing a solution to transport problemanula which is optimal in the sense of applying in all
in all cases where ellipses do not intersect. problems involving nonintersecting ellipses. This optimal ad-
The precursor to this present wdr&] was limited by the dition formula is derived precisely by using the Fourier ex-
restriction illustrated in Fig. 1: that the branch cut associateghansion of the multipoles centered 8nin terms of the el-
with elliptical coordinates be circumscribed by a circle lying liptical angular variable appropriate to the central ellipse.
completely within the central unit cell. This problem oc-  The optimal addition formula is used to derive a Rayleigh
curred because a nonoptimal addition formula was used fadentity: a system of linear equations whose solution deter-
the purpose of re-expressing the field arising from a generahines the effective transport coefficient of the rectangular
array, as well as the full form of the electrostatic field. We
verify this formulation in a number of ways. First, we com-
ment on the comparison between its results, those of our first
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FIG. 1. Geometrical restriction inherent in our previous formu-
lation. FIG. 2. Array of elliptical cylinders.
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attempt 3], and numerical results obtained by [3] usinga combination of the functiore™"", since all other analytic
boundary collocation method to determine the dielectric coneombinations of the four fundamental solutions invoe
stant of highly elongated arrays with any filling fraction. and so become singular at infinity. Therefore, the irregular
Second, we verify Keller's reciprocal relationsHi@,7] for basis functiong™ "%, is also uniquely determined so that the
this problem, and demonstrate numerically that in fact it isfield expansion in the region of the central unit cell exterior
satisfied exactly, even when truncated field representation® the inclusion is

are used in the Rayleigh method. Third, we show that as the

eccentricityc—0 and the elliptical coordinates become po- o c\n

lar, the Rayleigh identity reduces to that which is appropriate Ve(€ coshw)=Aq+ 2 {6”(5) A, coshnw

for the problem involving circular inclusiongl]. We also n=1

exhibit the versatility of our formulation by showing results

for the complex dielectric constant of various arrays of alu- +
minum cylinders.

n
B, exp—nw

2

. 3

It is useful for calculations to represent the potentials as
functions ofz which, under the coordinate transformation
The natural coordinates for transport problems involving=c coslw, reduce identically to the above representation.
elliptical cylinders where boundary matching must at someThat is,
stage be performed are elliptical coordinateg:>(0,— 7

II. FIELD EXPANSIONS

< #=<). These are implicitly defined in terms of Cartesian * c\n z
coordinates by Vi(z)=nEo 6“(2) CnTn< ) 4
z=Xx+iy=ccoslw=ccosiu+i6). (1)
- c\" z n z

This choice of coordinates allows the central elliptical inclu- ~ Ve(2)=Ao+ 2, [Gn(i) AnTn(E +| = BnVn(E) '
sion to be defined by a single coordinate= u (see Fig. 2 n=t )
while the four( fundar?)ental basis functions for the complex
potential aree!*"“=""% However, simply representing the . .
electrostatic potential as a series in these four functions inWhereT"(Z) is thenth Chebyshev polynomial and
troduces some redundancy and ignores a highly meaningful
separation of field types based on the location of their respec- Vv (E =ex;< n coshlE> ©6)
tive sources. In short, all electrostatic fields can be decom- "lc c
posed into a part with its effective sources at infinity and a
part with its effective sources on the local coordinate singu- . 2 2 -n
larity. =l—4+/—-=1\/-+1

Now, within the context of elliptical coordinates, that part c c c
of the field which has its sources at infinity must be regular , = = n
over the central branch cut=0 while becoming singular at = (_ Y S N | (7)
infinity. (A function is regular within a region if all of its c c c
derivatives and the function value itself are bounded. Within
the context of two-dimensional complex potential functions, z\ ™" n+1 n
it should be noted that if a function is analytic in a region, =2n<6> 2F1 5 ol

then it is also regular there. Furthermore, unless otherwise

specified, a “regular function” is one which has its only c\?

sources at infinity and an “irregular function” has its +1; E) } ®
sources in the finite part of the plahé simple calculation
shows that only linear combinations of the four fundamental
basis solutionse(*"“=" that can be expressed as linear
combinations of costw are regular on the branch cut. All
other linear combinations of the fundamental solutions hav
singularities in the first derivativdelectric field at the
branch points. As a result, the regular basis function i
uniquely determined to be caslv and so the expansion of
the field in the region interior to the inclusion is

Both series representatiof®),(5) for V, can be shown to
converge absolutely in an elliptical annulus properly includ-
ing the boundary of the physical inclusion= uq while the

Swo representation€),(4) for V; converge absolutely inside
an elliptical region properly containing = uq. Also, both

S’[he functionsT,,,V,, satisfy appropriate orthogonality rela-
tions on a given fixed ellipse, although it is a trivial matter to
apply Cauchy’s theorem and represent the inner products of
T,,V, as contour integrals around any contour that contains

V=, 6n(§) C, coshnw, (2)  the branch cut{c,+c):
n=0
. z z
wheree, is the Neumann symbolef=1,e,=2Vn>0). nl g T p oS
Similarly, that part of the field which is regular at infinity fﬁ dz= . nm (9)
and so has its sources along the branch cut must be a linear Vz+cyz—c €n
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FIG. 3. Geometry of the interior addition formula.

z z
Vn<6) Tm(E) 271 6 m
\/mz_cdz= PR (10
z z
wlgal
% deZZm 5n,m- (11)

Note that it is essential for the correct treatment of the branc
cut that the weight function be represented exactly as shown

in Egs.(9),(10) and not asyz2—c2.

Ill. THE ADDITION FORMULA

It is of fundamental importance to the Rayleigh metho
that there exists a convergent interior addition formula whic
can be applied to any problem involving nonintersecting el
lipses. Such a formula would allow the field due to cylinders

such as that centered @&(Figs. 2 and Bto be expanded in

terms of regular functions about the origin provided that the
field point z lay inside the biggest ellipse which completely

excludes the branch cut associated v8t{see Fig. 3. [Note
that the actual ellipses shown in Fig(solid lineg are noth-

ing more than a decoration—it is the position of the branc
cut at S and the field point that determine the convergenc
properties of the interior addition formula. The solid ellipse
may intersect without necessarily effecting the convergenc

of the addition formuld. Symbolically, the expansion is of
the form

12

FIG. 4. Critical geometries for the addition formula.
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Re(V))

FIG. 5. A continuous projection with, in the center and middle
figures, the solid line denoting the functidfy and the dashed line
its Fourier series.

To see that the expansi@h?2) is capable of representing an
optimally convergent interior addition formula, observe that,
for a givenz,, the right-hand side of Eq12) has the form
of a Fourier expansion on the surface of the central ellipse.
As such, the coefficients are defined by the standard projec-
tion integral and so all that is needed for this series to con-
verge uniformly and absolutely is that the function be repre-
sented,V,[(z/c)—(z,/c)], be smooth on the boundary of
the central inclusion. This will be true in general if the in-
clusions are nonintersecting because the source points for the
rf]ield generated by each inclusion cannot lie outside that in-
Clusion. In fact, for the case of elliptical inclusions, these
source points lie on the branch cut at the center of each
source ellipse, so that the smoothness ¥f[(z/c)
—(z,/c)] on the central ellipse is guaranteed provided
—Zz,¢(—c,c) or, equivalently, that Reosh [ (z—zp)/c]}
d;&O (see Fig. 4 This is clearly the case provided that the
heIIipses do not intersect, as can be seen in the following
sequence of plotsFigs. 5 and & in which the field
Vi[(z/c)—(zp/c)] is considered to be emanating from
sources on the branch cut .
From left to right we have the geometry of the situation;
the real part of both the exact projectidiull line) and the
series(2) reconstructiondashed ling of this projection; the
imaginary part of the exact projection displaying the projec-
htion of the field onto the central ellipse and the correspond-
dng series representati@8). For the first geometry the exact
Sprojection and its reconstruction can be seen to be almost
gjentical after including only five terms in the seri€®.
However, in the second geometry the previously described
restrictions are violated as the branch cut centeredzpn
enters the central ellipse and the series is seen not to con-
verge to the correct result.

The representation and calculation of tﬁé(zp) is an
intricate matter requiring care. Indeed, in view of the previ-
ous work involving circular or spherical inclusiopg], the
most obvious generalization of the Rayleigh method would
suggest the use of an addition formula of the form

Re(V))

y Im(V,)

FIG. 6. A discontinuous projection with, in the center and
middle figures, the solid line denoting the functidfy and the
dashed line its Fourier series.
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FIG. 7. Convergence of the addition formula written as a double )
series. c,

z z z . z, z FIG. 8. Paths of integration used to determine various Fourier
Vi e © 2521 rzl Cr Ve 3 Ts ol (13 coefficients.

Such a representation would of course result in a series for The outer radius of convergenge, e, is determined in
the BJ(z,/c) in terms of the irregular basis functions, a similar fashion by fixing a particular value of the source
Vi(zp), and in turn would lead to the seemingly natural iden-point and allowing the field poirt to slide around its coor-
tification of the lattice sums as a sum over the lattice of thigjinate ellipsex as this ellipse is enlarged. In what is an
irregular basis function. However, as will be shown, thisaimost identical situation to that described above, the first
form (13) of the addition formula and the corresponding &X-singularity is encountered on the axis when coShgyer
pansion of theBg(z,/c) in series of irregular functions do =coshu,—1. This restriction is really just a restating of that
not converge absoIL_Jter in an op_t|rr_1al region. The fOHOW'”ginvolving Linner, the only difference being that now the field
argument proves this by contradiction. point is considered to be the “active” variable in E(.3).

$uppose one requires absolute convergence of the dO.UD € The correct approach for calculating the coefficients
series(13). It is then clear that the convergence or otherwise . . . .
s(zy/c) in this case, and in fact the optimal route to a

can only depend on the two radial coordinagesu,. In- . . . .
deed, the ratio test shows that absolute convergence can 88”"efge”t representation for inclusions of any shape, is ob-
tained through the use of the orthogonality relati@f) on

expected foru less than some valugy,,er, andu, greater ) .
than some valug;,.,. However, as indicated in Fig. 4, the the curveC; (see Fig. 8 Provided that the branch cut cen-

best that can be hoped for from any addition formula correlered onz, remains entirely outside the path of integration,
sponds to the situation where convergence is observed 3iS yields the convergent integral representation

long as the branch cut centered gy does not touch the

coordinate ellipse passing through This would require

Minner 10 depend on the elliptical phase af and so we Vv -7, z
conclude that Eq(13) cannot converge absolutely in this ol Zp € "¢ s
optimum region. Bs <" o %Wdz. (14

In fact, the maximum region of convergence of E43)
can be determined by considering a fixed valug.tif coor-
dinate ellipse passing through the field parrdnd allowing
the value ofu, to decrease while the field poiat, slides
around its coordinate line. It is clear from the critical situa-
tion shown in Fig. 7 that the first time a singularity is en-
countered will be wher, is zero and the source branch cut
(BC) is just touching the ellipse along its major axis. This , . z
situation definegi;,ne, and in fact cospi,,e,=Ccoshu+1. As nffp|_ & |7 _°p
a result, the serie€l3) will not converge absolutelyin fact /35< c) 27TJ Vn(cosa C)cos(s@)d&. (15
it diverges for arrangements where the center of the source
ellipse, z,, is within the shaded region of Fig. (B1),(B2)
even though the ellipses may not intersect. Note also that this Although such an integral form can be used safely in a
restriction means thaj, must always be greater than Rayleigh formulation, a series expansion that is valid in the
cosh *(coshu+1)>cosh *2 in order for the representation optimum region and therefore equivalent to Ed) is in
(13) to be valid. In particular, this implies that the vertical some ways preferable. Even though its derivation is not on
spacing of a regular array defined by the veciysnust be  quite as solid a footing as the above integral representation, it
greater thany/3c in order for this form of the addition for- is possible to derive a series representation which is found to
mula to be applicable. This restriction is an improvementbe absolutely convergent in an optimal region. Such a series
over that obtained by Nicorovici and McPhedii@], which  can be derived in terms of Gaussian hypergeometric func-
requires this vertical spacing to be greater than&though tions by either differentiating the expansion of the field due
it is still far from optimal, since solutions to a large subset ofto a monopole or by manipulating certain series involving
array problems involving nonintersecting ellipses cannot béypergeometric functionsee Appendix A One form of the
solved while this restriction remains. result is

This integral can be collapsed onto the branchByibf Fig.
8 and transformed using elliptical coordinates to give an al-
ternate form which is superior for numerical purposes:

-
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7 Z o (2m+s+n—1)! wherez’ =z—z, and this timez, ranges over every cylinder
2(_,@) =(—1)"es > (M1 in the array. The only singularity at infinity is due to the
¢ m=o Mi(mM+s)t(n—1)! incident field and so we have
XVt ﬁ) oFy Zo(2\" z
n+2m+s —
c Ve(z)—% nZl (E BM(;) —(—Eq2)=0. (19

X|2m+s+n,2m+s;n+1;V, (16

%p
E) ' This reduces to Eq.17) after substituting Eq(5) and mak-
ing the choiceA,=0.

This series converges absolutely for all valuesigt-0.  We now wish to reduce the field identi¢7) to a set of
However, if the hypergeometric function is expanded usindinear equations connecting the coefficieAtsandB, of Eq.
the standard power series expansiéi then even though (5). We do this by imposing Eq17) on a contour traced out
|V(z,)| =€ <1 and the power series itself converges ab-by the field poinz where the addition formula is everywhere
solutely for allu,, the double series obtained fg(z,/c) ~ Valid. Such a contour is provided by an ellipse wiik-=o6
will only be conditionally convergent if &,up<cosh*12. + uq for 5_>0 a_small positive numbe_r. In all but the case
Furthermore, attempts made at manipulating the form of th&/here the inclusions actually touch, this contour can be cho-
series(16) by using the linear and quadratic transformationsSen to properly contain the physical inclusion and itself be
that apply to hypergeometric functions of the form properly contalngd by .the unit cell. It is straightforward to
,Fi(a,b,a—b+1:2), and various expansions of these hy- verify that,_prowdedﬁ is ch_osen to be sma_lll enough, the
pergeometric functions, did not alter this property of condi-Order condition on the addition formulaee Fig. 4
tional convergence[Some of these manipulations, and in
partigular one in which the hypergeometric function_ in Eq. o< min Re{cosh%ﬁ—com)
(16) is transformed into a terminating hypergeometric func- Cm<a=a
tion, are shown in the Appendicé#\s such, it is likely that
if the series(16) is to be considered as a double series injs satisfied for every array of nonintersecting ellipses.
elementary functions, then the arrangement of terms implicit Applying the addition formulg12) and equating coeffi-

in the form(16) is the unique one which produces a doublecients ofT(z/c) in Eq.(17) yields the final form of the field
series that is convergent for all values@f>0. identity:

, (20)

©

IV. FIELD AND RAYLEIGH IDENTITIES —
As=—Eods1+ >, a(n,s)B,, (22)
n=1

A. Field identity and lattice sums

The field identity is the essence of the Rayleigh method iRyhere we have introduced elliptic lattice sums defined by
that it provides a relationship connecting the regular part of

the field about a particular inclusion with the irregular field 1 /2\n+s 7
that has its sources located at all the other cylinder centers o(n,s)= _(E E BQ(%’). (22
[1]. In this particular problem, and with reference to the field €s p#0

expansion5), the field identity has the form

ni en(g) nAnTn(g) =—Eoz+ >, %

p#0 n=1

These sums are the direct analogue of the lattice sums intro-
2\n 2! duced for the circular problefii]. As for their circular coun-
(c) B,V ( ) terparts, in an array with rectangular symmetry whgrend

(17) z, are both lattice vectors, we have that all the sums must be
real. Furthermore, all arrays possess symmetry under the op-
erationz,— —z, so that only even values of the sum-s
yield a nonzero value forr(n,s). All the lattice sums are
absolutely convergent except fot(1,1), which is the ellip-
tical equivalent of the conditionally converges [1]. The
Qumerical problems arising from this conditional conver-
function and the sum of its singular paftither in the finite gence can be overcome thrpugh the use of Ku.mm.er S
method for converting a conditionally convergent series into

part of the plane or at infinilymust be a constant. Now, due an absolutely converaent one by subtracting a known sum
to the translational symmetry in the array, the coefficients, y 9 y 9 '

A, ,Bn,C, in Eq.(5) are the same when the field is expandedipec'f'ga"y’ by using the fact that for smallwe have(see
about any cylinder in the latticean exception to this i\, ppendix B

= —Epz,, which is cylinder dependent because of the exter-

nal field. Consequently, the contributions from all cylinders a(n,s)~(—1)"
in the lattice can be combined to give

where Eo=E,+iE, is the incident electric field and’ =z
—Z,, while the sum over the indeg includes all but the
central cylinder.

One way of deriving Eq(17) is to use Liouvilles’ theo-
rem, which states that the difference between an analyti

Sh+s: (23

s+n—1)

x and thatS, can be evaluated using the absolutely convergent
2\n 7’ . . .
> (_) ann<_)’ (18 ~ Series given in1], we can represent(1,1) as an absolutely
p n=1\C c convergent series:
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2\2 [ % appropriate for each of the two linear systef3d), (32),

E) Bil & . (29 poth systems can be solved to yield the coefficidftsand

Br. An application of Green’s theorem on the boundary of

It should be noted that the value of this conditionally con-the region between the inclusion and the unit cell boundary
vergent lattice sum changes depending on whether one @ves the components of the homogenized dielectric tensor
solving for thex component of the applied field or the [3]:

component. This is because the physically correct interpreta-

1
-2
E +Zp

o(1,)=—S,+ >,
p#0

tion of the conditionally convergent sua(1,1) requires the B
summation over needle-shaped regions oriented along the e =1+2m——, (33
line of the applied field 1]. 0h
. . . . 0
B. Boundary condltl?ns and the Rayleigh |der'1t|'ty 6; 142 . (34)
A second set of relations between the coefficiehisB,, EYap
may be obtained through the application of boundary condi-
tions on the surface of the central inclusiqry. These are
V. NUMERICAL RESULTS
Re(Ve)|#=MO— Re(vi)|#=#o’ 29 In both of the following applications of our formulation,
we follow the same basic numerical procedure, the only dif-
I Re(Ve) :6‘7 Re(V) (26) ference being that in the first we utilize only the integral
L p MR representatior(15) for the A7 and in the second a hybrid

representation involving both the integral representation and
where e is the relative dielectric constant of the elliptic in- the series representati¢h6) is used. All numerical calcula-
clusions. Now, the complex coefficiends ,B naturally de-  tions were carried out USINGATHEMATICA 3.0. The first step
compose into their real and imaginary parts which correds to calculate the lattice sums for a particular lattice geom-
spond to the parts of the solution which are, respectivelygetry (and value ofc) using Eq.(24). There are two approxi-
symmetric(e) and antisymmetri¢o) about thex axis. So, on  mations involved here: first, thg are not known exactly
writing: As=AS—iA, Bs=B:+iBg, and Cs=C{—iCJ, butone of either the series or integral representation must be
Egs.(25),(26) become(for s>0) used to approximate these coefficients, and second, the ac-
_ 0 tual summation over the lattice must be truncated at some
o coshs,u0+esmhs,uo(z) PR 27 stage. These approximate lattice symgn,s)] are used in
s (1—¢e)sinh2su, \c s’ the pair of infinite linear system@1), (32) (Rayleigh iden-
tities), which are also truncated before a simple matrix inver-
1 2\% sion yields the coefficient8(®® and in particularB{®® .
(1-e)sinh 2su, | © Bs. (28 These allow the calculation of the effective dielectric tensor
through(33),(34).

c=

AO_ecoshs,qursinhs,u0 2
S (1—e)sinh2su, \c

2s
—SuoRo
) € Bs. (29 A. Arrays of aluminum cylinders
1 5\ 2s Using the above procedure and the integral representation
C§=—<—) BC. 30 (15 of the Bg , we calculate the dielectric constant for certain
(1—e)sinh 25, | arrays of aluminum cylindergAll integrals were calculated

. . . . . using the numerical integration packages that are standard in
When_ cor_nbln_eq with the f'eld. identity21), we have wo MATHEMATICA 3.0.) The experimentally determined disper-
Rayleigh identities—one resulting from the field component,

_ . ! sion relation for aluminuni10] can be used to produce plots
along thex axis and one from that along theaxis[9,3]: of the real and imaginary parts of the effective dielectric

coshspuo+ € sinhspg [ 2|28 constant for the array as a fun_ction_of wavelength. Th_e fol-
_ (—) e~ StoB lowing plots show the real and imaginary parts of the dielec-
(1=e)sinhZsuy |C tric constant for aluminum as a function of wavelengthi-
® crons.
=—EjSs1t E o(n,s)BE, (31 Now, for each point on the above dispersion cu(iey.
n=1 9) we calculate a variety of results subject to the numerical

restrictions arising from the truncation of the Rayleigh iden-
tity (31),(32) to fifth order; the truncation of the lattice sum
series to 10th orde(i.e., a square of side length @nd the
" calculation of thegy to an accuracy of 1 part in $0The
_ 0 stability of this numerical approximation is strongly depen-
=~ Egdsa- z‘l a(n,5)By. 32 dent on the filling fraction of the cylinders within the unit
cell, but is typically accurate to the third or fourth significant
After tabulating the elliptical lattice sumsr(n,s), and  figure. This precision can be improved but the procedure
taking particular care to calculate the valueodfl,1) thatis  quickly becomes very time consuming.

€ coshsu g+ sinhsug ( 2

2s
—SugRO
(1—€)sinh 2su C) e oBs
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A A cally inasmuch as the deviations from E85) are indepen-
dent of the order of truncation of the Rayleigh identity
28 [ | (31),(32.

-500 S i Shown below are further tests of the formulation for suc-
-750 -400 cessively more demanding situatiorifigs. 11-13. The

-1000 600 ‘ various truncation orders used to obtain Fig. 10 have been
-1250 ‘ . left unchanged. It is found that in all of these cases, Keller's
-800 law is satisfied to within 1% over the entire range of wave-
lengths and that the dielectric constant itself is accurate to at
least three significant figures.

-1500
~1750 -1000

Re(e) Im(e) B. Verification of Lu's results
_FIG. 9. Aluminium dispersion curve. The wavelengtt) is in We also present here some results for highly rectangular
microns. arrays where the aspect ratio of both the inclusion and ellipse

is 10 to 1 and the dielectric constant is real. This case was
The first pair of plotgFig. 10 show the real and imagi- studied by Lu5] and almost all of his results are confirmed
nary parts of thec component of the effective dielectric con- using the numerical procedure described above with the nu-
stant[ € (€)]. The second pair shows the real and imaginarymerically efficient hybrid representation of ti .
parts of they component of the effective dielectric constant  The unbracketed numbers in Table | were obtained using
[€)(1/e)] for an array where the individual cylinders are this hybrid representation of thg? in which nearby inclu-
now considered to have a dielectric constant ef 1/ sions are included in the lattice sums using the integral rep-
These resultgFig. 10 satisfy Kellers Reciprocal Law resentation, while the more distant ones are included using
[6,7] to within 1%. Briefly, Keller's law states that if the the series representation. These results agree with those of
components of the dielectric tensor are considered to beu [5] for all filling fractions shown and were obtained by
functions of the dielectric constant of the inclusioesthen  requiring at least six significant figures of accuracy in both
the calculation of theg and the resulting lattice sunf24),
=1 (35) while the Rayleigh identity was truncated to ninth order.
In addition to reproducing Lu’s results using the hybrid
representation, we demonstrate the typical performance of
As previous Rayleigh formulations for circular inclusions the formulation using only the series representati®f)
have confirmed analyticalljl1], Keller's law is found to be truncated after 20 terms. These are the bracketed numbers of
satisfied(subject to the accuracy of calculation in determin-Taple | and were produced by requiring stability in the lattice
ing the BJ) even for finite truncation orders of the Rayleigh sums to about 1 part in #@Gnd using a fifth-order truncation
identity (31),(32). This has the consequence that within theof the Rayleigh identity. Note that if only the series repre-
context of a Rayleigh formulation, Keller's law can only be sentation is used, the increases in numerical precision re-
regarded as a test of self-consistency and as such stability guired to reach an accuracy of four significant figures using
the final numerical result for the effective dielectric constantthe series(16) in the cases where the filling fraction is
must be obtained independently of, and in addition to, agreegreater than 0.72 makes these calculations very time con-
ment with Keller's law. This effect is observed here numeri-suming.
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The reason that the series representafib®) produces is convergent for all geometries of the array and ellipse and
inaccurate results for large filling fractions is that in casesn so doing we have extended and completed the previous
such as this, with high array and inclusion aspect ratios, thergork on this problem using the Rayleigh methfgl. As
is a large degree of cancellation in the calculation of thegych, we have given the first completely successful example
hypergeometric functiofsee Appendix C and, in particular, ¢ yhe extension of Rayleigh's technique to noncircular/
Eq. (C_7)] for values ofz, that are purely Imaginary and of spherical geometries. Furthermore, in the course of obtaining
magnitude less thanc2 Therefore, in the region|%,|<2c) . . " . :

P this solution, a new addition formula for harmonic functions

the slower but more stable integral representaiids) is . . ) ) : .
used. g P @5 in elliptical coordinates was derived by taking the clear view

Finally, we note that Keller's reciprocal law is satisfied to Of the addition formula as simply a Fourier expansion about
within 1% for all cases shown in Table |1, ie., the central inclusion. This improved understanding of the

|6:(5)6;(0_2)_1|<|E;«(50)E;(0_02)_ 1/<0.01. Once 'ole of the addition formula makes clear the validity of the

again, we observe that the agreement with Keller's law idRayleigh method in the general case where the inclusion is

independent of the truncation order of the Rayleigh identity®’ arbitary shape because any smooth functipe., with
(31),(32). continuous first and second derivatiyggssesses an abso-

lutely and uniformly convergent Fourier series. Finally, our
method is applicable to dynamic problems and should re-
move the restrictions currently preventing a full solution for

We have exhibited a Rayleigh formulation for this trans-problems involving the scattering of waves by two or more
port problem involving rectangular arrays of ellipses whichellipses[12].

VI. CONCLUSIONS
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APPENDIX A: DERIVATION OF THE ¢ Va(z=2p) =2 —Vo(z—2)| — (A1)
0 gz™ m!
The method for deriving the integral representati{@f) z=0

of the B(z,) using the orthogonality relatiofiL0) is very  will converge inside some circle in theplane. So, on writ-
straightforward, although this representation is not numeriing
cally efficient when the source point is further than about 2

from the origin. Therefore, it is important for this and other aln n ntl n [ 1 2

; X . Vn(z—2,)=2""(z—2z,) ",F; ,=.n+1;
reasons to have an alternative representation as a series. We P P 2 '2 z-z,
present here the two main methods used to derive series such (A2)

TABLE I. Lu’s results for the effective response of array with dimensiars10, 8=1, and various
filling fractionsf.

f € (5) €;,(0.2) €5 (50) €y (0.02)

0.1 1.216 0.8223 1.433 0.6978
0.2 1.417 0.7056 1.817 0.5504
0.3 1.639 0.6100 2.288 0.4370.4371
0.4 1.899 0.5267 2.93(2.929 0.3413(0.3419
0.5 2.214 0.45170.4516 3.892(3.899 0.2569(0.2568
0.55 2.400(2.40) 0.4167(0.4165 4.589(4.593 0.2179(0.217%
0.6 2.611(2.612 0.3829(0.3828 5.536(5.5449 0.1806(0.1809
0.64 2.802(2.803 0.3568(0.356% 6.584(6.593 0.1519(0.151%
0.67 2.961(2.962 0.3377(0.3379 7.641(7.650 0.1309(0.1307%
0.7 3.136(3.13% 0.3189(0.3188 9.073(9.078 0.1102(0.1102
0.72 3.262(3.263 0.3065(0.3064 10.36(10.36 0.09648(0.9654
0.74 3.400(3.40) 0.2941(0.2941 12.12(12.08 0.08250(0.08277F
0.75 3.475(3.474 0.2878(0.2878 13.29(13.2) 0.07522(0.07572
0.76 3.554(3.552 0.2814(0.2815 14.81(14.62 0.06750(0.06841

0.77 3.641(3.636 0.2746(0.2752 16.99(16.47 0.0588(0.06073
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and utilizing formulas given if13], we have that This equation can be differentiated with respect to the
source pointz,, to generate expansions of the higher-order
m multipoles. In particular, we have the dipole expansion

J
@Vn(z_ Zp)|z:0= (— 1)n2mn(m)vn+ m(zp)ZFl

1 1 1
= — rw
X(m+n,mn+1;Vy(z,)), (A3) z-z, sinhw,,  sinhw,, E 2 costirw)e” "
(A9)
wherenM=n(n+1)(n+2)---(n+m—1) is the Pochham-
mer symbol. oW
Now, the standard polynomials™ can be expanded in =—E €, coshrw) P (A10)
terms of Chebyshev polynomials as ' sinhw,,”
1 m m Continuing this process we have, for-0,
:ﬁ Z m-p€p| M—P | Tp(2), (A4) )
2 (k=1)! 5 ;K1 [ e ™Wp
- o (2 )k— 2 € cos,r(rw)ﬁziﬁ1 sinhw, |
wheree, is 1 if kis even and 0 ik is odd. P (A11)

After substituting(A4) and (A3) into (Al), changing the
order of summation will analytically continue the circular
region of convergence @fA\l) into the wider one defined by
the restriction thar—z, ¢ (—1,1). Finally, after shifting the
summation index we have

When these expressions are substituted into the Laurent
expansion(valid for |z—z,|>1),

* p2kp—n-2k

. Vn(z—2 =E (22, ",
) ) (2m+s+n—1)! P T R
Vn<z—zp>—§0 (=1 ESmE:o m!(m+s)! (n—1)!

(A12)

h i i ith -
XVt amio(Zp)oF 1(2M+ 50, 2m+5;n and the appropriate comparison made with 8¢), we ob

tain
+15Va(zp))Ts(2). (A5)
€ & n(2K)9—n—2k
Comparison with Eq(12) gives Zp)= 2
p a12) g Bz =5 Z (n+1)Mk!(n+2k—1)!
(2m+s+n—1)! g2k
n _(_1\n
ﬁs(zp)_( 1) ESmE:O m! (m+S)!(n_l)! vas(zp), s>0, (A13)
p
XVniomis(Zp)2F1(2m+s+n,2m+s;n
and fors=0
+1;Va(zp)). (A6)
*° n(2k)2_”_2k an+2k
2. Differentiation of the monopole Bo(z,))=— E cosh !z, .
_ _ o P &0 (n+ 1)k (n+2k—1)! 9zt P
The most physically meaningful method of derivation re- (A14)

lies on the expansion of the field due to a monogok, the
two-dimensional Green'’s function for Laplace’s equation
terms of the elliptical basis functioné‘elliptical multi-
poles”): cosh 'z V,(2),V,(2),- - - V,(2).

The repeated derivative of the functidi(z,) is a known
function (preceding sectionand the repeated derivative of
cosh‘lzp can be evaluated using the Rodriguez formula for

From[14}, the Gegenbauer polynomidl$5]. So, after substituting and
1 S noting that the two cases=0 ands>0 may be combined,
—In(z=z,)=— InE —cosh'! z,+ > FT,(Z)Vr(zp) we have
r=1

(A7)

oo < N(2m+s+n-1)!
. Bs(zp)=(=1) ESmZ’O m!(m+n)!s!

In——wp+2 coshrw)e™ ",
XVni2mes(Zp)2F1(2m+s+n,2m+n;s
(A8)
+1;Va(2p)). (A15)

where z=coslw=coshu+if) and z,=costw,=coshfu,

+i6,). This series representation is convergent provided thathis is similar in form to the series obtained in the preceding
Mp> p. Itis interesting to note that cosFZp plays the role of section(A6), although it is not clear how their equivalence
the monopole in elliptical coordinates. can be proved directly.
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APPENDIX B: REDUCTION TO THE CIRCULAR
RAYLEIGH IDENTITY

It is a relatively straightforward matter to reduce the e
liptical Rayleigh identity(31),(32) to the circular Rayleigh

identity [1] by allowing the coordinate eccentricityto tend

to zero and in so doing transform the elliptical coordinates

into circular ones.
First, for a fixedz andc—0 the coordinate transform

=c coshw implies thatu = Re(w) becomes very large and so

z—ce"/2. This is the polar coordinate transform=re'?
with r=ce*/2 and¢= 6.

The above results imply that for fixed and c—0,
V. (z/c)—(c/2z)" and T,(z/c)—1/e,(22/c)", so that the
field expansiong5),(4) reduce to

o

Ve(2)=Ao+ >, [AZ"+B,z7 "], (B1)
n=1
Vi(2)= 20 Cn2". (B2)

These are the field expansions usedllihto solve the circu-
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AS,A?,BS,B2,CS,C2 tend to precisely the circular coeffi-

cients used by RayleigfL]. Therefore, the boundary condi-

I_tions (27-30 simplify (for s>0) to

eSHo+ ggSto [ 228
ge,o): - e—s,uoBge,o) , (B3)
(1—e)e®sHo\C
2s
ceo—_ 2 (2 geo) (B4)
° (1—ee*molc] P

After making the identificatior*o— 2ry/c, wherer is the
radius of the circular inclusion, these reduce further to give

1+e
AL =15 B, (B5)
(e,0) _ 2 —2sp(e,0)
ClE=—ry #BE. (B6)

These are identical to those used by Rayldighand others
in solving the circular problem.
Finally, to show that the field identit{21) reduces to the

lar problem and so it is evident that the elliptical coefficientscorrect form, consider

i(g)n Sﬁz(%)#—l)“(%)n SVM(E)E

€\ C c

(2m+s+n—1)! (zp
“omi(m+s)!(n—1)! 2™ ¢

(2m+s+n—1)!

z
2m-+s+n,2m+s;n+ 1;V2(€p))

ZFl

s+n—1

— (- 1)n2’;(n+s) 2
m=0

m!'(m+s)!(n—1)!

Smo— (= 1)" (B7)

—(n+s)
Jo,

Therefore, after summing over the lattice we have that ag fact some combination of elliptic functions of the third

c—0,

o(n,s)—(—1)" Shiss (B8)

s+n—1)

whereS, are the circular lattice sum§K=Ep¢oz;k. Using
this with the field identity(21) gives

kind [8], although the precise form is unknown. Interest-
ingly, however, in the case whemg=2, theﬁg(zp) reduce

to sums of elementary functions, although once again the
exact formula for generah and s is unknown. Also, the
special(and physically dubioyscase ofz,—0+i0 is known
exactly:

o] n—s
— stn-1 2e(—1)"i """ *nsinr 1+—)
As:_Eoés,l'l'nZ1 (_1)n( s )Sn+an- (B9) n(0+0i)=— s ) 2
- Ps m(n—s)(n+s)
Combining these results, we have shown that the field (CY)
expansions, boundary conditions, and field identity for the
elliptical problem reduce precisely to those of the circularOther results include
problem in the appropriate limit—a fact which has also been
confirmed numerically.
B3(2p)= s (€2

APPENDIX C: MISCELLANEOUS RESULTS, GRAPHS,
AND THE EXTERIOR ADDITION FORMULA Comparison betweefA6) and(A15) yields a deep relation-

ship satisfied by thes; :

1. Miscellaneous results involving theBy P y thes

In the course of studying the';(zp) and, in particular, the

integral representatiofi4), it was established tha{(z,) is ©3

Bz =(~1)"*2 B3(z,), >0,
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TABLE II. Values of 83(2.2).

n/s 0 1 2 3 4 5 6

0 1.0 0 0 0 0 0 0

1 —0.28747 —-0.16673 —0.052895 —0.018238 —0.0067557 —0.0026535 —0.0010917

2 0.09813 0.10579 0.047766 0.020595 0.0088342 0.0038278 0.0016842
3 —0.038516 —0.054713 -0.030893 —0.015781 -—0.0076917 —0.0036704 —0.0017378

4 0.016626 0.027023 0.017668 0.010256 0.005558 0.0028925 0.0014696
5 —0.0076167 —0.013267 —0.0095695 —0.0061173 —0.0036156 —0.0020289 —0.0010996

6 0.0036202  0.0065502  0.0050527 0.0034757 0.0022045 0.0013196  0.00075768

An equivalent formula holds for the elliptical lattice sums (Fig. 8), then the integral, while nontrivial, can be evaluated
a(n,s). in terms of elementary functions:

Also, a functional equation connecting t€ was able to
be derived by considering various forms of Efj2):

(A

1 2mi Vz+cyz—c
B 2= 5 2, Bz Bii(Z)
l¥1 n(2k)

€k < CUXo(zy),  (CH)
Z 2 s+k(zp ﬂs(zp)+ﬁs(zp)ﬁs+k(zp)

whereC;" is thenth Gegenbauer polynomial of timeth kind.
(C4 This integral can be used to derive an elegant form for the
exterior addition formuldC10).
wheren andm can be any integer. We list here some of the results that were derived in the
It was found that if the path of integration used in the course of striving for a more illuminating series representa-
integral representationfl4) was changed fronC; to C;  tion of the,BQ(zp):

=0
2 I,](2k) *®

Bl(zp)= = Co 2K (2 — €5, L)
= = e e— _ — €
S22 & (n+1)Mk Comn-alZp %0 (n+1)Mk! (n+2k—1)!

(22_ 1)1/2—n—2k2|:1

3 1-
X s—n—2k+1,—s—n—2k+1;§—n—2k; 5 2. (Co)

TABLE lIl. Values of B2(1/5).

n/s 0 1 2 3 4 5 6

0 1.0 0 0 0 0 0 0

1 0.54994 0.65647 —0.2971 —0.067735 —0.0065786 —0.013387 0.0039841
2 —0.12355 0.5582 0.47709 —0.25858 —0.083753 0.0027602 —0.013219
3 0.057677 —0.2032 0.3878l7 0.35764 —0.21574 —-0.082481 0.010243
4 —0.056579 0.026314 —0.16751 0.287d6 0.27262 —0.17527 —-0.074921
5 —0.0087316 —0.066934 —0.006900p —0.13747 0.21909 0.21007 —0.14106

6 —0.013847 —0.023904 —0.039656 —0.02048% —0.11238 0.16927 0.16313
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Also, note that the first sum becomes empty whers.

Using the linear transformation rules for hypergeometric
functions[8], we can express E@16) in terms of terminat-
ing hypergeometric functions:

(2m+s+n—1)!
m!(m+s)!(n—1)!

Blzp)=(—1)"es X,

m=0

Vn+ 2m+s(zp)
(1_ Vz(zp))4m+ 2s—

12F1(1-2m=s,1+n-2m

—s;n+1;Vy(2p)). (C7

The hypergeometric functions for which quadratic transfor-
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FIG. 14. Geometry of the exterior addition formula.

mations exist are related to Legendre functions and in par- )
ticular, using the equation connecting toroidal functions with!!! Shows the case where the branch cuts are almost touching

the ,F; (given on page 1022 dfL5]) we have

2
n [ n+s+1/2, _
Bs(zp)_( 1) nfs\/;

[

—2m— +s—1/2
2 2m-—s m+s (Zp)

2
Q=12

><mE:o m!(m+s)! (\/Z2p__1)2m+571/2'

If the Gegenbauer functions of the second kind are (i5éH
then we have

(82

Blzp)=(~ 1) Ve
* 272mfs

2
X \/;mz_o m!(m+s)!

2. Tables and graphs of thef(z,)

\Y,

n—-2m-s

2m+s— 1/2( Zp) ) (Cg)

Tables Il and Il contain the values gﬁ’s‘(zp) for certain
representative values @f, calculated to a precision of five
significant figures. In both these examples, the integral re
resentation(15) was used to calculate thgg(z,c) with c
=1.

Table Il is for the case,= 2.2, which corresponds to the
situation where the branch cutand therefore ellips¢sare
almost touching along th& direction. Alternatively, Table

along the y axis.

Table Il show the trend in which along the bottom row or
down the rightmost column the magnitude @ff is increas-
ing. While this is true, it is still the case that for any fixed
row or column, as the other index gets large the magnitude
of BY tends to 0. Indeed, the magnitudes are bounded by
those down the main diagonal and these are uniformly de-
creasing.

3. The exterior addition formula

The exterior addition formula enables a field, the sources
of which are located on the branch cut centeredSofsee
Fig. 14, to be expanded in terms of the functiovg(z/c).

The restriction on its applicability is that the field point must
lie outside the smallest ellipse that completely contains the
branch cuisee Fig. 14 The actual ellipses shown in Fig. 14
(solid lineg are nothing more than a decoration—it is the
position of the branch cut & and the field point that deter-
mine the convergence properties of the exterior addition for-
mula. Indeed, the solid ellipses may intersect or even overlap
without necessarily effecting the convergence of the addition

Pformula:
20
_ o 2 (2k)
) D n n+2k (2ol |y (2
n c < < () s—n—2k c S I .
$=0 | k=0 (n+1)Mk!
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