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Addition formulas and the Rayleigh identity for arrays of elliptical cylinders
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We apply the Rayleigh method to solve the problem where a uniform electrostatic field is imposed upon a
rectangular array of elliptical cylinders embedded in a matrix of unit dielectric constant. This new formulation
overcomes geometric restrictions inherent in previous methods and is shown in principle and in various
examples to converge for all possible geometries of the array and inclusion. Also presented are forms of both
the interior and exterior addition formulas for harmonic functions in elliptical coordinates that possess optimal
regions of convergence.@S1063-651X~99!03609-0#

PACS number~s!: 03.50.De, 41.20.Cv, 78.20.Bh, 78.20.Ci
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I. INTRODUCTION

This paper forms part of a systematic investigation of
generalization of a method due to Lord Rayleigh@1# for solv-
ing transport problems@2# of inhomogeneous media. Th
aim of the generalization is to extend Rayleigh’s multipo
technique to include geometries other than circles or sphe
This generalization is not straightforward, as is shown by
fact that our first attempt@3# at it in the context of a rectan
gular array of elliptical inclusions encountered an une
pected problem of convergence, resulting in an undesira
geometric restriction on the range of elliptical geometr
that could be solved. It is the principal purpose of the pres
work to show how the geometric restriction can be lifted, a
to demonstrate a generalization satisfactory in the sens
being capable of providing a solution to transport proble
in all cases where ellipses do not intersect.

The precursor to this present work@3# was limited by the
restriction illustrated in Fig. 1: that the branch cut associa
with elliptical coordinates be circumscribed by a circle lyin
completely within the central unit cell. This problem o
curred because a nonoptimal addition formula was used
the purpose of re-expressing the field arising from a gen

FIG. 1. Geometrical restriction inherent in our previous form
lation.
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inclusion~say, that centered onS in Fig. 2! in terms of fields
associated with the central inclusion.@The term ‘‘addition
theorem’’ is strictly intended to describe an algebraic eq
tion which relates the values of a single function evaluated
the general argumentsu,v,u1v. The coefficients in this al-
gebraic equation must be independent ofu,v. An ‘‘addition
formula’’ is a ~possibly transcendental! equation connecting
three ~possibly distinct! functions of the three argument
u,v,u1v. See@4#.# The addition formula was nonoptima
because it involved a mixture of polar and elliptical coord
nates and so exhibited a region of convergence inapprop
to a problem involving elliptical inclusions. Even when it
decided to use only harmonic functions of elliptical coord
nates in addition formulas, our work has revealed that a s
cific procedure must be used to construct the addition
mula which is optimal in the sense of applying in a
problems involving nonintersecting ellipses. This optimal a
dition formula is derived precisely by using the Fourier e
pansion of the multipoles centered onS, in terms of the el-
liptical angular variable appropriate to the central ellipse.

The optimal addition formula is used to derive a Raylei
identity: a system of linear equations whose solution de
mines the effective transport coefficient of the rectangu
array, as well as the full form of the electrostatic field. W
verify this formulation in a number of ways. First, we com
ment on the comparison between its results, those of our

-
FIG. 2. Array of elliptical cylinders.
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PRE 60 6069ADDITION FORMULAS AND THE RAYLEIGH IDENTITY . . .
attempt@3#, and numerical results obtained by Lu@5# using a
boundary collocation method to determine the dielectric c
stant of highly elongated arrays with any filling fractio
Second, we verify Keller’s reciprocal relationship@6,7# for
this problem, and demonstrate numerically that in fact it
satisfied exactly, even when truncated field representat
are used in the Rayleigh method. Third, we show that as
eccentricityc→0 and the elliptical coordinates become p
lar, the Rayleigh identity reduces to that which is appropri
for the problem involving circular inclusions@1#. We also
exhibit the versatility of our formulation by showing resul
for the complex dielectric constant of various arrays of a
minum cylinders.

II. FIELD EXPANSIONS

The natural coordinates for transport problems involv
elliptical cylinders where boundary matching must at so
stage be performed are elliptical coordinates: (m.0,2p
,u<p). These are implicitly defined in terms of Cartesi
coordinates by

z5x1 iy5c coshw5c cosh~m1 iu!. ~1!

This choice of coordinates allows the central elliptical inc
sion to be defined by a single coordinate:m5m0 ~see Fig. 2!
while the four fundamental basis functions for the comp
potential aree(6nm6 inu). However, simply representing th
electrostatic potential as a series in these four functions
troduces some redundancy and ignores a highly meanin
separation of field types based on the location of their resp
tive sources. In short, all electrostatic fields can be dec
posed into a part with its effective sources at infinity and
part with its effective sources on the local coordinate sin
larity.

Now, within the context of elliptical coordinates, that pa
of the field which has its sources at infinity must be regu
over the central branch cutm50 while becoming singular a
infinity. ~A function is regular within a region if all of its
derivatives and the function value itself are bounded. Wit
the context of two-dimensional complex potential function
it should be noted that if a function is analytic in a regio
then it is also regular there. Furthermore, unless otherw
specified, a ‘‘regular function’’ is one which has its on
sources at infinity and an ‘‘irregular function’’ has it
sources in the finite part of the plane.! A simple calculation
shows that only linear combinations of the four fundamen
basis solutions,e(6nm6 inu), that can be expressed as line
combinations of coshnw are regular on the branch cut. A
other linear combinations of the fundamental solutions h
singularities in the first derivative~electric field! at the
branch points. As a result, the regular basis function
uniquely determined to be coshnw and so the expansion o
the field in the region interior to the inclusion is

Vi5 (
n50

`

enS c

2D n

Cn coshnw, ~2!

whereen is the Neumann symbol (e051,en52;n.0).
Similarly, that part of the field which is regular at infinit

and so has its sources along the branch cut must be a l
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combination of the functione2nw, since all other analytic
combinations of the four fundamental solutions involveenw

and so become singular at infinity. Therefore, the irregu
basis function,e2nw, is also uniquely determined so that th
field expansion in the region of the central unit cell exter
to the inclusion is

Ve~c coshw!5A01 (
n51

` FenS c

2D n

An coshnw

1S 2

cD n

Bn exp2nwG . ~3!

It is useful for calculations to represent the potentials
functions ofz which, under the coordinate transformationz
5c coshw, reduce identically to the above representatio
That is,

Vi~z!5 (
n50

`

enS c

2D n

CnTnS z

cD , ~4!

Ve~z!5A01 (
n51

` FenS c

2D n

AnTnS z

cD1S 2

cD n

BnVnS z

cD G ,
~5!

whereTn(z) is thenth Chebyshev polynomial and

VnS z

cD5expS 2n cosh21
z

cD ~6!

5S z

c
1Az

c
21Az

c
11D 2n

5S z

c
2Az

c
21Az

c
11D n

~7!

522nS z

cD 2n

2F1Fn11

2
,
n

2
;n

11;S c

zD
2G . ~8!

Both series representations~3!,~5! for Ve can be shown to
converge absolutely in an elliptical annulus properly inclu
ing the boundary of the physical inclusionm5m0 while the
two representations~2!,~4! for Vi converge absolutely inside
an elliptical region properly containingm5m0. Also, both
the functionsTn ,Vn satisfy appropriate orthogonality rela
tions on a given fixed ellipse, although it is a trivial matter
apply Cauchy’s theorem and represent the inner product
Tn ,Vn as contour integrals around any contour that conta
the branch cut (2c,1c):

R TnS z

cDTmS z

cD
Az1cAz2c

dz5
2p idn,m

en
, ~9!
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R VnS z

cDTmS z

cD
Az1cAz2c

dz5
2p idn,m

en
, ~10!

R VnS z

cDVmS z

cD
Az1cAz2c

dz52p idn,m . ~11!

Note that it is essential for the correct treatment of the bra
cut that the weight function be represented exactly as sh
in Eqs.~9!,~10! and not asAz22c2.

III. THE ADDITION FORMULA

It is of fundamental importance to the Rayleigh meth
that there exists a convergent interior addition formula wh
can be applied to any problem involving nonintersecting
lipses. Such a formula would allow the field due to cylinde
such as that centered onS ~Figs. 2 and 3! to be expanded in
terms of regular functions about the origin provided that
field point z lay inside the biggest ellipse which complete
excludes the branch cut associated withS ~see Fig. 3!. @Note
that the actual ellipses shown in Fig. 3~solid lines! are noth-
ing more than a decoration—it is the position of the bran
cut at S and the field point that determine the convergen
properties of the interior addition formula. The solid ellips
may intersect without necessarily effecting the converge
of the addition formula.# Symbolically, the expansion is o
the form

VnS z

c
2

zp

c D5(
s50

`

bs
nS zp

c DTsS z

cD . ~12!

FIG. 3. Geometry of the interior addition formula.

FIG. 4. Critical geometries for the addition formula.
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To see that the expansion~12! is capable of representing a
optimally convergent interior addition formula, observe th
for a givenzp , the right-hand side of Eq.~12! has the form
of a Fourier expansion on the surface of the central ellip
As such, the coefficients are defined by the standard pro
tion integral and so all that is needed for this series to c
verge uniformly and absolutely is that the function be rep
sented,Vn@(z/c)2(zp /c)#, be smooth on the boundary o
the central inclusion. This will be true in general if the in
clusions are nonintersecting because the source points fo
field generated by each inclusion cannot lie outside that
clusion. In fact, for the case of elliptical inclusions, the
source points lie on the branch cut at the center of e
source ellipse, so that the smoothness ofVn@(z/c)
2(zp /c)# on the central ellipse is guaranteed providedz
2zp¹(2c,c) or, equivalently, that Re$cosh21@(z2zp)/c#%
Þ0 ~see Fig. 4!. This is clearly the case provided that th
ellipses do not intersect, as can be seen in the follow
sequence of plots~Figs. 5 and 6! in which the field
V1@(z/c)2(zp /c)# is considered to be emanating fro
sources on the branch cut atzp .

From left to right we have the geometry of the situatio
the real part of both the exact projection~full line! and the
series~2! reconstruction~dashed line! of this projection; the
imaginary part of the exact projection displaying the proje
tion of the field onto the central ellipse and the correspo
ing series representation~2!. For the first geometry the exac
projection and its reconstruction can be seen to be alm
identical after including only five terms in the series~2!.
However, in the second geometry the previously descri
restrictions are violated as the branch cut centered onzp
enters the central ellipse and the series is seen not to
verge to the correct result.

The representation and calculation of thebs
n(zp) is an

intricate matter requiring care. Indeed, in view of the pre
ous work involving circular or spherical inclusions@1#, the
most obvious generalization of the Rayleigh method wo
suggest the use of an addition formula of the form

FIG. 5. A continuous projection with, in the center and midd
figures, the solid line denoting the functionV1 and the dashed line
its Fourier series.

FIG. 6. A discontinuous projection with, in the center an
middle figures, the solid line denoting the functionV1 and the
dashed line its Fourier series.
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VnS z

c
2

zp

c D5(
s51

`

(
r 51

`

cr ,s
n Vr S zp

c DTsS z

cD . ~13!

Such a representation would of course result in a series
the bs

n(zp /c) in terms of the irregular basis function
Vk(zp), and in turn would lead to the seemingly natural ide
tification of the lattice sums as a sum over the lattice of t
irregular basis function. However, as will be shown, th
form ~13! of the addition formula and the corresponding e
pansion of thebs

n(zp /c) in series of irregular functions do
not converge absolutely in an optimal region. The followi
argument proves this by contradiction.

Suppose one requires absolute convergence of the do
series~13!. It is then clear that the convergence or otherw
can only depend on the two radial coordinatesm,mp . In-
deed, the ratio test shows that absolute convergence ca
expected form less than some value,mouter , andmp greater
than some valuem inner . However, as indicated in Fig. 4, th
best that can be hoped for from any addition formula cor
sponds to the situation where convergence is observe
long as the branch cut centered onzp does not touch the
coordinate ellipse passing throughz. This would require
m inner to depend on the elliptical phase ofzp and so we
conclude that Eq.~13! cannot converge absolutely in th
optimum region.

In fact, the maximum region of convergence of Eq.~13!
can be determined by considering a fixed value ofmth coor-
dinate ellipse passing through the field pointz and allowing
the value ofmp to decrease while the field pointzp slides
around its coordinate line. It is clear from the critical situ
tion shown in Fig. 7 that the first time a singularity is e
countered will be whenup is zero and the source branch c
~BC! is just touching the ellipse along its major axis. Th
situation definesm inner and in fact coshminner5coshm11. As
a result, the series~13! will not converge absolutely~in fact
it diverges! for arrangements where the center of the sou
ellipse,zp , is within the shaded region of Fig. 7~B1!,~B2!
even though the ellipses may not intersect. Note also that
restriction means thatmp must always be greater tha
cosh21(coshm11).cosh212 in order for the representatio
~13! to be valid. In particular, this implies that the vertic
spacing of a regular array defined by the vectorszp must be
greater thanA3c in order for this form of the addition for-
mula to be applicable. This restriction is an improveme
over that obtained by Nicorovici and McPhedran@3#, which
requires this vertical spacing to be greater than 2c, although
it is still far from optimal, since solutions to a large subset
array problems involving nonintersecting ellipses cannot
solved while this restriction remains.

FIG. 7. Convergence of the addition formula written as a dou
series.
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The outer radius of convergence,mouter , is determined in
a similar fashion by fixing a particular value of the sour
point and allowing the field pointz to slide around its coor-
dinate ellipsem as this ellipse is enlarged. In what is a
almost identical situation to that described above, the fi
singularity is encountered on thex axis when coshmouter

5coshmp21. This restriction is really just a restating of th
involving m inner , the only difference being that now the fiel
point is considered to be the ‘‘active’’ variable in Eq.~13!.

The correct approach for calculating the coefficien
bs

n(zp /c) in this case, and in fact the optimal route to
convergent representation for inclusions of any shape, is
tained through the use of the orthogonality relation~10! on
the curveC1 ~see Fig. 8!. Provided that the branch cut cen
tered onzp remains entirely outside the path of integratio
this yields the convergent integral representation

bs
nS zp

c D5
es

2p i R
VnS z2zp

c DTsS z

cD
Az1cAz2c

dz. ~14!

This integral can be collapsed onto the branch cutB0 of Fig.
8 and transformed using elliptical coordinates to give an
ternate form which is superior for numerical purposes:

bs
nS zp

c D5
es

2pE2p

p

VnS cosu2
zp

c D cos~su!du. ~15!

Although such an integral form can be used safely in
Rayleigh formulation, a series expansion that is valid in
optimum region and therefore equivalent to Eq.~14! is in
some ways preferable. Even though its derivation is not
quite as solid a footing as the above integral representatio
is possible to derive a series representation which is foun
be absolutely convergent in an optimal region. Such a se
can be derived in terms of Gaussian hypergeometric fu
tions by either differentiating the expansion of the field d
to a monopole or by manipulating certain series involvi
hypergeometric functions~see Appendix A!. One form of the
result is

e

FIG. 8. Paths of integration used to determine various Fou
coefficients.
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bs
nS zp

c D5~21!nes (
m50

`
~2m1s1n21!!

m! ~m1s!! ~n21!!

3Vn12m1sS zp

c D 2F1

3F2m1s1n,2m1s;n11;V2S zp

c D G . ~16!

This series converges absolutely for all values ofmp.0.
However, if the hypergeometric function is expanded us
the standard power series expansion@8#, then even though
uV2(zp)u5e2mp,1 and the power series itself converges a
solutely for allmp , the double series obtained forbs

n(zp /c)
will only be conditionally convergent if 0,mp,cosh212.
Furthermore, attempts made at manipulating the form of
series~16! by using the linear and quadratic transformatio
that apply to hypergeometric functions of the for
2F1(a,b,a2b11;z), and various expansions of these h
pergeometric functions, did not alter this property of con
tional convergence.@Some of these manipulations, and
particular one in which the hypergeometric function in E
~16! is transformed into a terminating hypergeometric fun
tion, are shown in the Appendices.# As such, it is likely that
if the series~16! is to be considered as a double series
elementary functions, then the arrangement of terms imp
in the form ~16! is the unique one which produces a doub
series that is convergent for all values ofmp.0.

IV. FIELD AND RAYLEIGH IDENTITIES

A. Field identity and lattice sums

The field identity is the essence of the Rayleigh method
that it provides a relationship connecting the regular par
the field about a particular inclusion with the irregular fie
that has its sources located at all the other cylinder cen
@1#. In this particular problem, and with reference to the fie
expansion~5!, the field identity has the form

(
n51

`

enS c

2D n

AnTnS z

cD52Ē0z1 (
pÞ0

(
n51

` S 2

cD n

BnVnS z8

c D ,

~17!

whereE05Ex1 iEy is the incident electric field andz85z
2zp , while the sum over the indexp includes all but the
central cylinder.

One way of deriving Eq.~17! is to use Liouvilles’ theo-
rem, which states that the difference between an ana
function and the sum of its singular parts~either in the finite
part of the plane or at infinity! must be a constant. Now, du
to the translational symmetry in the array, the coefficie
An ,Bn ,Cn in Eq. ~5! are the same when the field is expand
about any cylinder in the lattice~an exception to this isA0

52Ē0zp , which is cylinder dependent because of the ext
nal field!. Consequently, the contributions from all cylinde
in the lattice can be combined to give

(
p

(
n51

` S 2

cD n

BnVnS z8

c D , ~18!
g

-

e
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n
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wherez85z2zp and this timezp ranges over every cylinde
in the array. The only singularity at infinity is due to th
incident field and so we have

Ve~z!2(
p

(
n51

` S 2

cD n

BnVnS z8

c D2~2Ē0z!50. ~19!

This reduces to Eq.~17! after substituting Eq.~5! and mak-
ing the choiceA050.

We now wish to reduce the field identity~17! to a set of
linear equations connecting the coefficientsAn andBn of Eq.
~5!. We do this by imposing Eq.~17! on a contour traced ou
by the field pointz where the addition formula is everywher
valid. Such a contour is provided by an ellipse withm5d
1m0 for d.0 a small positive number. In all but the cas
where the inclusions actually touch, this contour can be c
sen to properly contain the physical inclusion and itself
properly contained by the unit cell. It is straightforward
verify that, providedd is chosen to be small enough, th
order condition on the addition formula~see Fig. 4!,

m0, min
2p,a<p

ReFcosh21S zp

c
2cosa D G , ~20!

is satisfied for every array of nonintersecting ellipses.
Applying the addition formula~12! and equating coeffi-

cients ofTs(z/c) in Eq. ~17! yields the final form of the field
identity:

As52Ē0ds,11 (
n51

`

s~n,s!Bn , ~21!

where we have introduced elliptic lattice sums defined by

s~n,s!5
1

es
S 2

cD n1s

(
pÞ0

bs
nS zp

c D . ~22!

These sums are the direct analogue of the lattice sums in
duced for the circular problem@1#. As for their circular coun-
terparts, in an array with rectangular symmetry wherezp and
z̄p are both lattice vectors, we have that all the sums mus
real. Furthermore, all arrays possess symmetry under the
erationzp→2zp so that only even values of the sumn1s
yield a nonzero value fors(n,s). All the lattice sums are
absolutely convergent except fors(1,1), which is the ellip-
tical equivalent of the conditionally convergentS2 @1#. The
numerical problems arising from this conditional conve
gence can be overcome through the use of Kumm
method for converting a conditionally convergent series i
an absolutely convergent one by subtracting a known s
Specifically, by using the fact that for smallc we have~see
Appendix B!

s~n,s!;~21!nS s1n21

s DSn1s , ~23!

and thatS2 can be evaluated using the absolutely converg
series given in@1#, we can represents(1,1) as an absolutely
convergent series:
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s~1,1!52S21 (
pÞ0

F1

2 S 2

cD 2

b1
1S zp

c D1zp
22G . ~24!

It should be noted that the value of this conditionally co
vergent lattice sum changes depending on whether on
solving for thex component of the applied field or they
component. This is because the physically correct interpr
tion of the conditionally convergent sums(1,1) requires the
summation over needle-shaped regions oriented along
line of the applied field@1#.

B. Boundary conditions and the Rayleigh identity

A second set of relations between the coefficientsAn ,Bn
may be obtained through the application of boundary con
tions on the surface of the central inclusion,m0. These are

Re~Ve!um5m0
5Re~Vi !um5m0

, ~25!

] Re~Ve!

]m U
m5m0

5e
] Re~Vi !

]m m5m0
, ~26!

wheree is the relative dielectric constant of the elliptic in
clusions. Now, the complex coefficientsAs ,Bs naturally de-
compose into their real and imaginary parts which cor
spond to the parts of the solution which are, respectiv
symmetric~e! and antisymmetric~o! about thex axis. So, on
writing: As5As

e2 iAs
o , Bs5Bs

e1 iBs
o , and Cs5Cs

e2 iCs
o ,

Eqs.~25!,~26! become~for s.0)

As
e5

coshsm01e sinhsm0

~12e!sinh 2sm0
S 2

cD 2s

e2sm0Bs
e , ~27!

Cs
e5

1

~12e!sinh 2sm0
S 2

cD 2s

Bs
e , ~28!

As
o5

e coshsm01sinhsm0

~12e!sinh 2sm0
S 2

cD 2s

e2sm0Bs
o , ~29!

Cs
o5

1

~12e!sinh 2sm0
S 2

cD 2s

Bs
o . ~30!

When combined with the field identity~21!, we have two
Rayleigh identities—one resulting from the field compone
along thex axis and one from that along they axis @9,3#:

coshsm01e sinhsm0

~12e!sinh 2sm0
S 2

cD 2s

e2sm0Bs
e

52E0
xds,11 (

n51

`

s~n,s!Bn
e , ~31!

e coshsm01sinhsm0

~12e!sinh 2sm0
S 2

cD 2s

e2sm0Bs
o

52E0
yds,12 (

n51

`

s~n,s!Bn
o . ~32!

After tabulating the elliptical lattice sums,s(n,s), and
taking particular care to calculate the value ofs(1,1) that is
-
is

a-

he

i-

-
,

t

appropriate for each of the two linear systems~31!, ~32!,
both systems can be solved to yield the coefficientsBn

e and
Bn

o . An application of Green’s theorem on the boundary
the region between the inclusion and the unit cell bound
gives the components of the homogenized dielectric ten
@3#:

ex* 5112p
B1

e

E0
xab

, ~33!

ey* 5112p
B1

o

E0
yab

. ~34!

V. NUMERICAL RESULTS

In both of the following applications of our formulation
we follow the same basic numerical procedure, the only d
ference being that in the first we utilize only the integr
representation~15! for the bs

n and in the second a hybrid
representation involving both the integral representation
the series representation~16! is used. All numerical calcula-
tions were carried out usingMATHEMATICA 3.0. The first step
is to calculate the lattice sums for a particular lattice geo
etry ~and value ofc) using Eq.~24!. There are two approxi-
mations involved here: first, thebs

n are not known exactly
but one of either the series or integral representation mus
used to approximate these coefficients, and second, the
tual summation over the lattice must be truncated at so
stage. These approximate lattice sums@s(n,s)# are used in
the pair of infinite linear systems~31!, ~32! ~Rayleigh iden-
tities!, which are also truncated before a simple matrix inv
sion yields the coefficientsBn

(e,o) and in particularB1
(e,o) .

These allow the calculation of the effective dielectric tens
through~33!,~34!.

A. Arrays of aluminum cylinders

Using the above procedure and the integral representa
~15! of thebs

n , we calculate the dielectric constant for certa
arrays of aluminum cylinders.~All integrals were calculated
using the numerical integration packages that are standa
MATHEMATICA 3.0.! The experimentally determined dispe
sion relation for aluminum@10# can be used to produce plo
of the real and imaginary parts of the effective dielect
constant for the array as a function of wavelength. The f
lowing plots show the real and imaginary parts of the diel
tric constant for aluminum as a function of wavelength~mi-
crons!.

Now, for each point on the above dispersion curve~Fig.
9! we calculate a variety of results subject to the numeri
restrictions arising from the truncation of the Rayleigh ide
tity ~31!,~32! to fifth order; the truncation of the lattice sum
series to 10th order~i.e., a square of side length 10!; and the
calculation of thebs

n to an accuracy of 1 part in 105. The
stability of this numerical approximation is strongly depe
dent on the filling fraction of the cylinders within the un
cell, but is typically accurate to the third or fourth significa
figure. This precision can be improved but the proced
quickly becomes very time consuming.
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The first pair of plots~Fig. 10! show the real and imagi
nary parts of thex component of the effective dielectric con
stant@ex* (e)#. The second pair shows the real and imagin
parts of they component of the effective dielectric consta
@ey* (1/e)# for an array where the individual cylinders a
now considered to have a dielectric constant of 1/e.

These results~Fig. 10! satisfy Kellers Reciprocal Law
@6,7# to within 1%. Briefly, Keller’s law states that if the
components of the dielectric tensor are considered to
functions of the dielectric constant of the inclusions,e, then

ex* ~e!ey* S 1

e D51. ~35!

As previous Rayleigh formulations for circular inclusion
have confirmed analytically@11#, Keller’s law is found to be
satisfied~subject to the accuracy of calculation in determ
ing thebs

n) even for finite truncation orders of the Rayleig
identity ~31!,~32!. This has the consequence that within t
context of a Rayleigh formulation, Keller’s law can only b
regarded as a test of self-consistency and as such stabili
the final numerical result for the effective dielectric consta
must be obtained independently of, and in addition to, ag
ment with Keller’s law. This effect is observed here nume

FIG. 9. Aluminium dispersion curve. The wavelength (l) is in
microns.
y

e

-

in
t
e-
-

cally inasmuch as the deviations from Eq.~35! are indepen-
dent of the order of truncation of the Rayleigh identi
~31!,~32!.

Shown below are further tests of the formulation for su
cessively more demanding situations~Figs. 11–13!. The
various truncation orders used to obtain Fig. 10 have b
left unchanged. It is found that in all of these cases, Kelle
law is satisfied to within 1% over the entire range of wav
lengths and that the dielectric constant itself is accurate t
least three significant figures.

B. Verification of Lu’s results

We also present here some results for highly rectang
arrays where the aspect ratio of both the inclusion and elli
is 10 to 1 and the dielectric constant is real. This case w
studied by Lu@5# and almost all of his results are confirme
using the numerical procedure described above with the
merically efficient hybrid representation of thebs

n .
The unbracketed numbers in Table I were obtained us

this hybrid representation of thebs
n in which nearby inclu-

sions are included in the lattice sums using the integral r
resentation, while the more distant ones are included us
the series representation. These results agree with thos
Lu @5# for all filling fractions shown and were obtained b
requiring at least six significant figures of accuracy in bo
the calculation of thebs

n and the resulting lattice sums~24!,
while the Rayleigh identity was truncated to ninth order.

In addition to reproducing Lu’s results using the hybr
representation, we demonstrate the typical performance
the formulation using only the series representation~16!
truncated after 20 terms. These are the bracketed numbe
Table I and were produced by requiring stability in the latti
sums to about 1 part in 104 and using a fifth-order truncation
of the Rayleigh identity. Note that if only the series repr
sentation is used, the increases in numerical precision
quired to reach an accuracy of four significant figures us
the series~16! in the cases where the filling fraction i
greater than 0.72 makes these calculations very time c
suming.
of
FIG. 10. Effective response as a function
the wavelength,l ~microns! for an array with
parametersa52, b51, and a filling fraction of
0.4.
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FIG. 11. Effective response as a function
the wavelength,l ~microns! for an array with
parametersa52, b51, and a filling fraction of
0.7
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The reason that the series representation~16! produces
inaccurate results for large filling fractions is that in cas
such as this, with high array and inclusion aspect ratios, th
is a large degree of cancellation in the calculation of
hypergeometric function@see Appendix C and, in particula
Eq. ~C7!# for values ofzp that are purely imaginary and o
magnitude less than 2c. Therefore, in the region (uzpu,2c)
the slower but more stable integral representation~15! is
used.

Finally, we note that Keller’s reciprocal law is satisfied
within 1% for all cases shown in Table I, i.e
uex* (5)ey* (0.2)21u,uex* (50)ey* (0.02)21u,0.01. Once
again, we observe that the agreement with Keller’s law
independent of the truncation order of the Rayleigh iden
~31!,~32!.

VI. CONCLUSIONS

We have exhibited a Rayleigh formulation for this tran
port problem involving rectangular arrays of ellipses whi
s
re
e

s
y

-

is convergent for all geometries of the array and ellipse a
in so doing we have extended and completed the prev
work on this problem using the Rayleigh method@3#. As
such, we have given the first completely successful exam
of the extension of Rayleigh’s technique to noncircul
spherical geometries. Furthermore, in the course of obtain
this solution, a new addition formula for harmonic functio
in elliptical coordinates was derived by taking the clear vie
of the addition formula as simply a Fourier expansion ab
the central inclusion. This improved understanding of t
role of the addition formula makes clear the validity of th
Rayleigh method in the general case where the inclusio
of arbitary shape because any smooth function~i.e., with
continuous first and second derivatives! possesses an abso
lutely and uniformly convergent Fourier series. Finally, o
method is applicable to dynamic problems and should
move the restrictions currently preventing a full solution f
problems involving the scattering of waves by two or mo
ellipses@12#.
of
FIG. 12. Effective response as a function
the wavelength,l ~microns! for an array with
parametersa54, b51, and a filling fraction of
0.4.
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FIG. 13. Effective response as a function
the wavelength,l ~microns! for an array with
parametersa54, b51, and a filling fraction of
0.7.
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APPENDIX A: DERIVATION OF THE bs
n

The method for deriving the integral representation~15!
of the bs

n(zp) using the orthogonality relation~10! is very
straightforward, although this representation is not num
cally efficient when the source point is further than aboutc
from the origin. Therefore, it is important for this and oth
reasons to have an alternative representation as a series
present here the two main methods used to derive series
te

.
st

i-

We
ch

as ~16! for the bs
n(zp), although it should be realized tha

because of the large number of linear and quadratic trans
mations linking various hypergeometric functions, there
many equivalent forms possible.

1. Analytic continuation of a Taylor series

For a fixedzp the Taylor expansion

Vn~z2zp!5(
0

`
]m

]zm
Vn~z2zp!U

z50

zm

m!
~A1!

will converge inside some circle in thez plane. So, on writ-
ing

Vn~z2zp!522n~z2zp!2n
2F1Fn11

2
,
n

2
;n11;S 1

z2zp
D 2G
~A2!
TABLE I. Lu’s results for the effective response of array with dimensionsa510, b51, and various
filling fractions f.

f ex* (5) ey* (0.2) ex* (50) ey* (0.02)

0.1 1.216 0.8223 1.433 0.6978
0.2 1.417 0.7056 1.817 0.5504
0.3 1.639 0.6100 2.288 0.4370~0.4371!
0.4 1.899 0.5267 2.930~2.929! 0.3413~0.3414!
0.5 2.214 0.4517~0.4516! 3.892~3.894! 0.2569~0.2568!
0.55 2.400~2.401! 0.4167~0.4165! 4.589~4.593! 0.2179~0.2177!
0.6 2.611~2.612! 0.3829~0.3828! 5.536~5.544! 0.1806~0.1804!
0.64 2.802~2.803! 0.3568~0.3567! 6.584~6.593! 0.1519~0.1517!
0.67 2.961~2.962! 0.3377~0.3376! 7.641~7.650! 0.1309~0.1307!
0.7 3.136~3.137! 0.3189~0.3188! 9.073~9.078! 0.1102~0.1102!
0.72 3.262~3.263! 0.3065~0.3064! 10.36~10.36! 0.09648~0.9654!
0.74 3.400~3.401! 0.2941~0.2941! 12.12~12.08! 0.08250~0.08277!
0.75 3.475~3.474! 0.2878~0.2878! 13.29~13.21! 0.07522~0.07571!
0.76 3.554~3.552! 0.2814~0.2815! 14.81~14.62! 0.06750~0.06841!
0.77 3.641~3.636! 0.2746~0.2751! 16.99~16.47! 0.0588~0.06073!
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and utilizing formulas given in@13#, we have that

]m

]zm
Vn~z2zp!uz505~21!n2mn(m)Vn1m~zp!2F1

3„m1n,m;n11;V2~zp!…, ~A3!

wheren(m)5n(n11)(n12)•••(n1m21) is the Pochham-
mer symbol.

Now, the standard polynomialszm can be expanded in
terms of Chebyshev polynomials as

zm5
1

2m (
p50

m

em2pepS m

m2p

2
D Tp~z!, ~A4!

whereek is 1 if k is even and 0 ifk is odd.
After substituting~A4! and ~A3! into ~A1!, changing the

order of summation will analytically continue the circul
region of convergence of~A1! into the wider one defined by
the restriction thatz2zp¹(21,1). Finally, after shifting the
summation index we have

Vn~z2zp!5(
s50

`

~21!nes (
m50

`
~2m1s1n21!!

m! ~m1s!! ~n21!!

3Vn12m1s~zp!2F1„2m1s1n,2m1s;n

11;V2~zp!…Ts~z!. ~A5!

Comparison with Eq.~12! gives

bs
n~zp!5~21!nes (

m50

`
~2m1s1n21!!

m! ~m1s!! ~n21!!

3Vn12m1s~zp!2F1„2m1s1n,2m1s;n

11;V2~zp!…. ~A6!

2. Differentiation of the monopole

The most physically meaningful method of derivation r
lies on the expansion of the field due to a monopole~i.e., the
two-dimensional Green’s function for Laplace’s equation! in
terms of the elliptical basis functions~‘‘elliptical multi-
poles’’!: cosh21z,V1(z),V2(z),•••,Vr(z).

From @14#,

2 ln~z2zp!52 ln
1

2
2cosh21 zp1(

r 51

`
2

r
Tr~z!Vr~zp!

~A7!

52 ln
1

2
2wp1(

r 51

`
2

r
cosh~rw !e2rwp,

~A8!

where z5coshw5cosh(m1iu) and zp5coshwp5cosh(mp
1iup). This series representation is convergent provided
mp.m. It is interesting to note that cosh21zp plays the role of
the monopole in elliptical coordinates.
-

at

This equation can be differentiated with respect to
source point,zp , to generate expansions of the higher-ord
multipoles. In particular, we have the dipole expansion

1

z2zp
52

1

sinhwp
2

1

sinhwp
(
r 51

`

2 cosh~rw !e2rwp

~A9!

52(
r 50

`

e r cosh~rw !
e2rwp

sinhwp
. ~A10!

Continuing this process we have, fork.0,

~k21!!

~z2zp!k
52(

r 50

`

e r cosh~rw !
]k21

]zp
k21 S e2rwp

sinhwp
D .

~A11!

When these expressions are substituted into the Lau
expansion~valid for uz2zpu.1),

Vn~z2zp!5 (
k50

`
n(2k)22n22k

~n11!(k)k!
~z2zp!2n22k, ~A12!

and the appropriate comparison made with Eq.~12!, we ob-
tain

bs
n~zp!5

es

s (
k50

`
n(2k)22n22k

~n11!(k)k! ~n12k21!!

3
]n12k

]zp
n12k

Vs~zp!, s.0, ~A13!

and fors50

bs
n~zp!52 (

k50

`
n(2k)22n22k

~n11!(k)k! ~n12k21!!

]n12k

]zp
n12k

cosh21zp .

~A14!

The repeated derivative of the functionVs(zp) is a known
function ~preceding section! and the repeated derivative o
cosh21zp can be evaluated using the Rodriguez formula
the Gegenbauer polynomials@15#. So, after substituting and
noting that the two casess50 ands.0 may be combined,
we have

bs
n~zp!5~21!nes (

m50

`
n~2m1s1n21!!

m! ~m1n!!s!

3Vn12m1s~zp!2F1„2m1s1n,2m1n;s

11;V2~zp!…. ~A15!

This is similar in form to the series obtained in the preced
section~A6!, although it is not clear how their equivalenc
can be proved directly.
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APPENDIX B: REDUCTION TO THE CIRCULAR
RAYLEIGH IDENTITY

It is a relatively straightforward matter to reduce the
liptical Rayleigh identity~31!,~32! to the circular Rayleigh
identity @1# by allowing the coordinate eccentricityc to tend
to zero and in so doing transform the elliptical coordina
into circular ones.

First, for a fixedz and c→0 the coordinate transformz
5c coshw implies thatm5Re(w) becomes very large and s
z→cew/2. This is the polar coordinate transformz5reif

with r 5cem/2 andf5u.
The above results imply that for fixedz and c→0,

Vn(z/c)→(c/2z)n and Tn(z/c)→1/en(2z/c)n, so that the
field expansions~5!,~4! reduce to

Ve~z!5A01 (
n51

`

@Anzn1Bnz2n#, ~B1!

Vi~z!5 (
n50

`

Cnzn. ~B2!

These are the field expansions used in@1# to solve the circu-
lar problem and so it is evident that the elliptical coefficien
a

e
th
la
e

-

s

As
e ,As

o ,Bs
e ,Bs

o ,Cs
e ,Cs

o tend to precisely the circular coeffi
cients used by Rayleigh@1#. Therefore, the boundary cond
tions ~27–30! simplify ~for s.0) to

As
(e,o)5

esm01eesm0

~12e!e2sm0
S 2

cD 2s

e2sm0Bs
(e,o) , ~B3!

Cs
(e,o)5

2

~12e!e2sm0
S 2

cD 2s

Bs
(e,o) . ~B4!

After making the identificationem0→2r 0 /c, wherer 0 is the
radius of the circular inclusion, these reduce further to gi

As
(e,o)5

11e

12e
r 0

22sBs
(e,o) , ~B5!

Cs
(e,o)5

2

12e
r 0

22sBs
(e,o) . ~B6!

These are identical to those used by Rayleigh@1# and others
in solving the circular problem.

Finally, to show that the field identity~21! reduces to the
correct form, consider
1

es
S 2

cD n1s

bs
nS zp

c D5~21!nS 2

cD n1s

Vn1sS zp

c D (
m50

`
~2m1s1n21!!

m! ~m1s!! ~n21!!
V2mS zp

c D 2F1X2m1s1n,2m1s;n11;V2S zp

c D C
→~21!nzp

2(n1s) (
m50

`
~2m1s1n21!!

m! ~m1s!! ~n21!!
dm,0→~21!nS s1n21

s D zp
2(n1s) . ~B7!
d
st-

the
Therefore, after summing over the lattice we have that
c→0,

s~n,s!→~21!nS s1n21

s DSn1s , ~B8!

whereSk are the circular lattice sums:Sk5(pÞ0zp
2k . Using

this with the field identity~21! gives

As52Ē0ds,11 (
n51

`

~21!nS s1n21

s DSn1sBn . ~B9!

Combining these results, we have shown that the fi
expansions, boundary conditions, and field identity for
elliptical problem reduce precisely to those of the circu
problem in the appropriate limit—a fact which has also be
confirmed numerically.

APPENDIX C: MISCELLANEOUS RESULTS, GRAPHS,
AND THE EXTERIOR ADDITION FORMULA

1. Miscellaneous results involving thebs
n

In the course of studying thebs
n(zp) and, in particular, the

integral representation~14!, it was established thatbs
n(zp) is
s

ld
e
r
n

in fact some combination of elliptic functions of the thir
kind @8#, although the precise form is unknown. Intere
ingly, however, in the case wherezp52, thebs

n(zp) reduce
to sums of elementary functions, although once again
exact formula for generaln and s is unknown. Also, the
special~and physically dubious! case ofzp→01 i0 is known
exactly:

bs
n~010i !52

2es~21!ni 2n2sn sinpS 11
n2s

2 D
p~n2s!~n1s!

.

~C1!

Other results include

bs
0~zp!5d0,s . ~C2!

Comparison between~A6! and~A15! yields a deep relation-
ship satisfied by thebs

n :

bs
n~zp!5~21!n2s

n

s
bn

s~zp!, s.0. ~C3!
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TABLE II. Values of bs
n(2.2).

n/s 0 1 2 3 4 5 6

0 1.0 0 0 0 0 0 0
1 20.28747 20.16673 20.052895 20.018238 20.0067557 20.0026535 20.0010917
2 0.09813 0.10579 0.047766 0.020595 0.0088342 0.0038278 0.0016
3 20.038516 20.054713 20.030893 20.015781 20.0076917 20.0036704 20.0017378
4 0.016626 0.027023 0.017668 0.010256 0.005558 0.0028925 0.0014
5 20.0076167 20.013267 20.0095695 20.0061173 20.0036156 20.0020289 20.0010996
6 0.0036202 0.0065502 0.0050527 0.0034757 0.0022045 0.0013196 0.0007
s

he

ed

the

the
ta-
An equivalent formula holds for the elliptical lattice sum
s(n,s).

Also, a functional equation connecting thebs
n was able to

be derived by considering various forms of Eq.~12!:

bk
n1m~zp!5

1

2 (
i 50

k

b i
n~zp!bk2 i

m ~zp!

1
ek

4 (
s50

`

bs1k
n ~zp!bs

m~zp!1bs
n~zp!bs1k

m ~zp!,

~C4!

wheren andm can be any integer.
It was found that if the path of integration used in t

integral representation~14! was changed fromC1 to C3
~Fig. 8!, then the integral, while nontrivial, can be evaluat
in terms of elementary functions:

es

2p i R
VnS z2zp

c DTsS z

cD
Az1cAz2c

dz

5 (
k50

b s2n
2 c

n(2k)

~n11!(k)k!
Cs2n22k

n12k ~zp!, ~C5!

whereCn
m is thenth Gegenbauer polynomial of themth kind.

This integral can be used to derive an elegant form for
exterior addition formula~C10!.

We list here some of the results that were derived in
course of striving for a more illuminating series represen
tion of thebs

n(zp):
bs
n~zp!5

es

2 (
k50

b s2n
2 c

n(2k)

~n11!(k)k!
Cs2n22k

n12k ~zp!2es(
k50

` n(2k)~ 1
2 !(n12k)

~n11!(k)k! ~n12k21!!
~zp

221!1/22n22k
2F1

3Xs2n22k11,2s2n22k11;
3

2
2n22k;

12zp

2
C. ~C6!

TABLE III. Values of bs
n(I /5).

n/s 0 1 2 3 4 5 6

0 1.0 0 0 0 0 0 0
1 0.54994I 0.65647 20.2971I 20.067735 20.0065786I 20.013387 0.0039841I
2 20.12355 0.5582I 0.47709 20.25858I 20.083753 0.0027602I 20.013219
3 0.057677I 20.2032 0.38787I 0.35764 20.21574I 20.082481 0.010243I
4 20.056579 0.026314I 20.16751 0.28766I 0.27262 20.17527I 20.074921
5 20.0087316I 20.066934 20.0069005I 20.13747 0.21909I 0.21007 20.14106I
6 20.013847 20.023904I 20.039656 20.020485I 20.11238 0.16927I 0.16313
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Also, note that the first sum becomes empty whenn.s.
Using the linear transformation rules for hypergeome

functions@8#, we can express Eq.~16! in terms of terminat-
ing hypergeometric functions:

bs
n~zp!5~21!nes (

m50

`
~2m1s1n21!!

m! ~m1s!! ~n21!!

3
Vn12m1s~zp!

~12V2~zp!!4m12s212F1„122m2s,11n22m

2s;n11;V2~zp!…. ~C7!

The hypergeometric functions for which quadratic transf
mations exist are related to Legendre functions and in p
ticular, using the equation connecting toroidal functions w
the 2F1 ~given on page 1022 of@15#! we have

bs
n~zp!5~21!n1s11/2nesA2

p

3 (
m50

`
222m2s

m! ~m1s!!

Qn21/2
2m1s21/2~zp!

~Azp
221!2m1s21/2

. ~C8!

If the Gegenbauer functions of the second kind are used@14#,
then we have

bs
n~zp!5~21!n1s11/2nes

3A2

p (
m50

`
222m2s

m! ~m1s!!
Vn22m2s

2m1s21/2~zp!. ~C9!

2. Tables and graphs of thebs
n
„zp…

Tables II and III contain the values ofbs
n(zp) for certain

representative values ofzp calculated to a precision of five
significant figures. In both these examples, the integral r
resentation~15! was used to calculate thebs

n(zpc) with c
51.

Table II is for the casezp52.2, which corresponds to th
situation where the branch cuts~and therefore ellipses! are
almost touching along thex direction. Alternatively, Table
le

hs

B.
c

-
r-

p-

III shows the case where the branch cuts are almost touc
along the y axis.

Table III show the trend in which along the bottom row
down the rightmost column the magnitude ofbs

n is increas-
ing. While this is true, it is still the case that for any fixe
row or column, as the other index gets large the magnit
of bs

n tends to 0. Indeed, the magnitudes are bounded
those down the main diagonal and these are uniformly
creasing.

3. The exterior addition formula

The exterior addition formula enables a field, the sour
of which are located on the branch cut centered onS ~see
Fig. 14!, to be expanded in terms of the functionsVs(z/c).
The restriction on its applicability is that the field point mu
lie outside the smallest ellipse that completely contains
branch cut~see Fig. 14!. The actual ellipses shown in Fig. 1
~solid lines! are nothing more than a decoration—it is th
position of the branch cut atS and the field point that deter
mine the convergence properties of the exterior addition
mula. Indeed, the solid ellipses may intersect or even ove
without necessarily effecting the convergence of the addit
formula:

VnS z2zp

c D5(
s50

` F (
k50

bs2n
2 c

n(2k)

~n11!(k)k!
Cs2n22k

n12k S zp

c D GVsS z

cD .

~C10!

FIG. 14. Geometry of the exterior addition formula.
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